Si hay un matemático a quien se pueda calificar de analista puro, sin la más pequeña mezcla de geómetra, este matemático es Weierstrass, con quien se inicia la que se ha llamado aritmetización de la Matemática .
En su tiempo, el Análisis había hecho grandes progresos, pero era necesario coordinar las investigaciones de Gauss en Aritmética superior con la teoría de funciones elípticas de Abel y Jacobi y con la de invariantes de la escuela inglesa: labor de ordenación y sistematización que exigía un cerebro privilegiado que no sólo asimilara toda la producción analítica del siglo XVIII y buena parte del XIX, sino que, además, estuviese dotado de genio creador. Este cerebro fue Carlos Weierstrass, quien, de haber vivido en la época de Platón, se habría declarado adversario ideológico del fundador de la Academia y amigo de Eudoxio de Cnido, el sagaz crítico constructivo que tuvo la valentía de enfrentarse con el heredero espiritual de Sócrates. Sin los intelectuales ociosos que rodearon a Platón y sin las alucinaciones místicas del Timeo , la que llamamos hoy Matemática moderna hubiera empezado dos mil años antes.
La Matemática actual, la Matemática que se inicia con Weierstrass, no tiene nada de misteriosa, ni de esotérica, ni de mística, ni de mágica: Matemática al margen del idealismo platónico que, para satisfacer las necesidades emocionales de los griegos del siglo IV antes de J. C., dejó el animismo fuera de los límites de la investigación experimental inventando un mundo real de símbolos y de números, del que sólo es una sombra nuestro mundo, y afirmando que los juicios matemáticos son verdades eternas, opinión que habría de esgrimir Kant contra los materialistas de su tiempo. También es culpable Kant del retraso de la Matemática porque su consejero áulico, Segnier, era un expositor y no un investigador. Sírvale de disculpa el hecho de que cuando publicó la Crítica de la razón pura, se ignoraba aún la función no auditiva de los conductos semicirculares del oído, de cuya disposición anatómica depende el número de dimensiones del espacio; pero desde que las dos ciencias más recientes, la Biología y la Psicología experimental, con la audacia propia de la juventud, le han faltado al respeto a las creencias tradicionales, los argumentos ex mathematicis kantianos están derogados.
En el capítulo de cargos no olvidemos tampoco a Hegel, cuyos razonamientos triangulares hicieron resucitar el culto mágico del número 3, que se creyó derrotado en el siglo XVIII cuando ya parecía olvidada la filosofía de los doctores de la Sorbona, quienes al poner la lógica aristotélica al lado de la teología católica, empezaron por admitir la trinidad de pensamiento, sentimiento y volición, que todavía no ha desaparecido por completo, y subdividieron tales potencias en tres categorías, y así sucesivamente, para colocar lo Absoluto en el vértice común de todos estos triángulos desvanecientes.
Weierstrass comprendió que era necesario podar la manigua que rodeaba a la Matemática para que ésta alcanzase su pleno desarrollo, y atacó el problema en su raíz: el número irracional, cuyo estudio comenzó en el punto en que lo había dejado Eudoxio, lo que le llevó al convencimiento de que todo el Análisis había que construirlo sobre el número entero y de que toda la Matemática tenía que hablar no el lenguaje oscuro de la filosofía hegeliana, sino el claro lenguaje de los números naturales.
Y en esto, que era en cierta forma la realización del ideal pitagórico en cuanto hipóstasis del Número, consiste uno de los méritos de Weierstrass, que hubiera bastado para incorporar su nombre a la historia de la Matemática si no tuviera, además, otros títulos que lo hacen acreedor a ello.
No hay comentarios:
Publicar un comentario